Radar level sensor factory with Kaidi86: When the cover above the closed metal cover is opened, the false signal disappears, the overall noise line decreases, and the echo curve decreases. After analysis, it is determined that the closed metal cover is the main cause of false signals, the radar level meter antenna is made of plastic, and the radar waves emitted by the antenna leak into the external environment. The closed metal shield is used to cover the instrument, and the leaked radar wave signal is received by the antenna after several reflections inside the shield, generating a false level. Therefore, the metal shield was modified to a ring-shaped non-sealed shield at a later stage, and the radar level meter jump was significantly reduced. See additional info at radar level transmitter.
The whole process measurement is rain proof, corrosion proof, high temperature, high pressure, leakage proof, no blind area, eye-catching display, intuitive reading, and a wide measurement range, suitable for all kinds of towers, tanks, tanks, spherical vessels and boilers and other equipment continuous measurement of liquid level. Optional liquid level alarm switch, can realize the upper and lower limit of liquid level alarm and control.
Measuring principle of radar water level meter: The radar level gauge adopts the working mode of transmitting-reflecting-receiving. The electromagnetic wave emitted by the antenna is reflected by the surface of the measured object and then received by the antenna. After measuring the distance from the water surface to the radar antenna, the elevation of the water surface can be calculated according to the elevation of the radar antenna. The radar water level meter adopts pulse wave technology with low power consumption. It can be powered by two-wire 24 VDC, 485 interface output, or can be directly powered by 12 VDC, SDI-12 interface output, with high accuracy and wider application range.
For more accurate measurement in deaerators, magnetrol guided wave radar (GWR) is a preferred option. Since its performance and accuracy are not contingent on the specific gravity and/or inference, it can provide reliable measurements in all situations, including the difficult and turbulent process conditions of deaerators and feedwater heaters. In addition, GWR does not require external inputs or calibration to achieve specified performance. This effectively eliminates the introduction of errors during the calibration process or from external sources, i.e., pressure and temperature. With this high level of accuracy, operators can trust that their deaerators will be well controlled.
Secondly, in cement production, material level measurement encountered another difficulty is strong dust interference, especially pneumatic conveying powder silo, dust flying when feeding, low visibility, laser level meter and high energy ultrasonic level meter can not be measured, although radar level meter at this time can receive part of the surface echo. But the echo signal was also weakened. In addition, due to the uneven surface of the radar echo is refracted, will also lead to the existence of radar echo; In addition, there are some conditions from the bottom to the bin inflation, so that the material surface loose, material level measurement is more difficult.
With emphasis placed on customer satisfaction, innovation, product development and overall business transformation, the company continued to innovate and expand with each passing year. KAIDI has successfully achieved global recognition, obtaining the leading position as Asia’s top process automation sensor manufacturer. In the past 5 years, the company has undergone tremendous growth and development – flourishing internationally and providing customers worldwide with the best customized solutions for process automation. Find additional details on https://www.kaidi86.com/. Kaidi Energy is a level gauge manufacturer which more than 20 years of industrial automation experience.
Thermal interference. During the operation of the thermal power plant, its thermal equipment will generate a lot of heat, causing changes in the surrounding instruments and ambient temperature. This is what we call thermal interference. These disturbances can affect the components of the magnetrol radar level gauge and further create problems such as inaccurate measurements. Light interference, light interference mainly exists in semiconductor components. Many components used to control instruments are made of semiconductor materials whose conductivity changes under the influence of light. This will affect the normal use of the radar level gauge.
Under many operating conditions, ultrasonic level meter and radar level meter are commonly used. Some users are very entangled in the choice of these two level meter and do not know how to choose. Today, let’s talk about the principles and selection principles of these two types of level meter . Principle and selection principle of ultrasonic level meter. Working principle: The ultrasonic pulse probe emits a beam of ultrasonic pulses to the measured medium, and the sound wave is reflected by the liquid surface. The distance between the liquid levels is measured by measuring the time difference between the emission and reflection of the sound waves. Since the ultrasonic level gauge is not a liquid, it can be used to measure corrosive, non-volatile and non-foaming places.
Temperature Compensation- Precision in Any Environment Another advancement in guided radar level measurement technology is the incorporation of mechanisms that compensate for temperature variations. Temperature fluctuations in microwave module circuits can lead to inaccuracies in measuring levels. To tackle this challenge, radar level measurement systems have implemented creative solutions. A crucial aspect of these advancements involves allocating a portion of the radar transmission pulse as a reference pulse. This reference pulse serves as a benchmark for comparing measurements enabling temperature calibration. When temperature changes occur the radar sensor can adjust its measurements accordingly ensuring that environmental conditions have no impact on accuracy. This temperature compensation feature is particularly valuable in applications where significant temperature shifts are common. Industries dealing with temperatures or processes prone to variations, such as petrochemical or food manufacturing sectors, rely on precise measurements. Radar sensors equipped with temperature compensation mechanisms rise to the occasion by delivering reliable results despite changing conditions.
Measurement accuracy, the accuracy of ordinary radar is generally ±10mm, and the accuracy of precision radar is ±3mm. Selection according to the actual needs of production. Range, according to actual needs, choose the antenna size. Note that the actual range is reduced in complex environments. Antenna type and antenna size, the larger the antenna size, the larger the measured range and the stronger the anti-interference ability. The antenna types of radar level gauge are rod type, bell mouth type, paraboloid and so on.