Auto parts stamping manufacturers by Dongguan Fortuna: Evolution of Stamping Technology – Stamping technology has evolved dramatically since the early days of car manufacturing. In the past, mechanical presses dominated the industry, relying on brute force and manual adjustments. Today, hydraulic presses and servo-driven systems offer far greater control over speed and pressure. Computer-aided design (CAD) and finite element analysis (FEA) enable engineers to simulate the stamping process before production begins, minimizing trial-and-error. Modern dies often incorporate cooling channels and sensors to optimize performance and extend lifespan. Furthermore, laser cutting and progressive die stamping have streamlined production by combining multiple operations in one continuous process. The integration of digital monitoring systems allows real-time feedback, predictive maintenance, and adaptive manufacturing. As a result, stamping has become faster, safer, and more flexible, supporting the growing diversity of car models and the industry’s shift toward lightweight materials and sustainable production practices. Discover additional details at metal stamping automotive.
Different materials may require different tool materials and coatings. For example, carbide tools are excellent for cutting hard metals, while high-speed steel tools might be suitable for softer materials. Matching the tool to the material and the specific machining task can enhance efficiency and part quality. Tool Path Optimization – Tool path planning is essential for reducing machining time and improving efficiency. Effective tool path strategies like climb milling, where the cutting tool rotates in the same direction as the material is fed, can reduce tool wear and improve surface finish. Trochoidal milling, a technique that uses circular tool paths, can also be beneficial for removing material efficiently. By optimizing tool paths, you can reduce machining time, minimize tool wear, and achieve better part quality.
We usually use high-speed steel, cold work die steel, hot work die steel, carbon tool steel, etc., which have the characteristics of high hardness, high heat resistance, high strength, high tensile strength and toughness, and are widely used in various types of mold parts Processing, including forging dies, high-speed cutting, milling, etc. At present, our company has 7 Mitsubishi slow wire cutting machines with a processing accuracy of 0.002mm. They are mainly used to process various precision, small and complex terminals, shrapnel, and bracket molds, focusing on controlling the precision of the products.
Optimize Tool Changes: Frequent tool changes can add to machining time and costs. Grouping similar features and designing parts that require fewer tool changes can improve efficiency. This approach reduces downtime and increases the machine’s productive time. Utilize Batch Processing: If you’re producing multiple identical or similar parts, batch processing can be highly efficient. Machining parts in batches allows for streamlined setups and continuous production, reducing the time spent on individual setups for each part. Discover extra information at https://www.dgmetalstamping.com/.
In-mold riveting can be used for multiple sets of molds, reducing costs while ensuring smooth production. Achievable effects:Our in-mold riveting technology is very mature and can be used in automatic riveting equipment. The product riveting speed can reach 100 times/min. The automated sensor control system is used to monitor the quality of the product riveting assembly in real time and reduce the defective product rate. Fortuna has excellent advantages in the design and processing of rolling molds. It has 20 years of experience, especially for the rounding of metal stamping products, the angle and accuracy can be controlled. Products produced through product rolling round mold can achieve a roundness tolerance of 0.03mm, and realize high-tech solutions such as riveting of multiple products in the mold, tapping in the mold, and welding in the mold.
Whether you’re a seasoned engineer or just starting, these insights will streamline your design process and enhance the performance of your machined parts. Let’s dive in and unlock the full potential of CNC machining for your projects. Key Design Considerations For CNC Machining – Designing parts for CNC machining involves several crucial considerations. Focusing on these areas can help you create parts that are easier to manufacture, perform better, and are more cost-effective.
Clean Surfaces and No Damage – Copper scratches easily and reacts to dirt or oil. A good supplier uses clean tools and packaging to avoid this. It keeps surfaces ready for brazing or electrical use. You won’t face any finishing issues after delivery. Parts arrive clean, sealed, and ready to use. On-Time Delivery with Less Delay – Professional suppliers plan better and hold material stock. This keeps your lead times short and predictable. Even custom orders stay on schedule. So, you can avoid delays caused by missing stock and broken tools. The process stays stable from order to shipment. Full Records and Traceable Materials – Quality parts come with full documentation. A trusted supplier gives you material certifications and batch tracking. You always know where each part came from. This helps you with audits, field support, and product safety. It also builds trust across your project teams.