Flow meter measuring devices supplier factory from China

Flow instrumentation supplier factory 2024: Radar level meter adopts non-contact measurement, and has the advantages of high measurement accuracy, not affected by process conditions, easy to install and easy to maintain, so it is widely used in offshore oil platforms in recent years. Today, we would like to take you through several actual cases in offshore oil platform to understand the reasons and solutions of the radar level meter’s measurement value jumping. The first case was an oil field where the radar level meter in the left crude tank jumped to full scale several times during production. A sealed metal cover was used to cover the main body of the sensor, and during the test, it was found by connecting the radar level transmitter that the closed metal cover would result in more false signals throughout the measurement range, and the overall noise line would rise. Read more info on flow instrumentation.

What are the characteristics of radar water level meter? All measuring components are designed in an integrated manner, and there is no mechanical wear during measurement. Because the measurement is a non-contact measurement, it is not affected by the physical properties such as the density and concentration of the water body, it is not easy to be washed away by floods, has a long service life and is easy to maintain. The advantages of the radar level transmitter are obvious. The editor warmly reminds that to choose the right one, it is still necessary to meet your own situation.

Any appreciable gain in boiler feedwater achieved through the process reduces the amount of energy (fuel) required at the boiler— in fact, every 10.8°F (6°C) rise in boiler feedwater amounts to a one percent savings in fuel cost. Inadequate level controls can inhibit the deaeration process (level too high) or reduce/shutdown feedwater flow to the boiler (level too low). The former affects hardware longevity and efficiency, while the latter risks production losses and possible damage to pumps.

Advanced Radar Level Measurement: The constant progress of innovation continues to push the limits of radar level measurement, propelling this technology into areas of capability and pertinence. As industries undergo transformations and integrate the Industrial Internet of Things (IIoT) into their operational processes radar devices have evolved to meet these changing demands. Integration with IIoT- Leading the Way to Industry 4.0 One of the transformative developments in radar level measurement is the seamless integration of Industrial Internet of Things (IIoT) capabilities into radar devices. These radar sensors equipped with IIoT features have become important components in Industry 4.0 initiatives ushering in an era where data driven excellence prevails in operations.

With emphasis placed on customer satisfaction, innovation, product development and overall business transformation, the company continued to innovate and expand with each passing year. KAIDI has successfully achieved global recognition, obtaining the leading position as Asia’s top process automation sensor manufacturer. In the past 5 years, the company has undergone tremendous growth and development – flourishing internationally and providing customers worldwide with the best customized solutions for process automation. Discover extra information at kaidi86.com. Suitable for chemical industry, petroleum industry, metallurgical industry, water conservancy and electronic industry, etc.

For radar level gauges, there are many reasons for interference and many sources of interference. We analyze from four aspects: internal, external, AC and DC. Celestial and celestial interference, first of all, what is celestial interference? Celestial objects refer to the sun or other stars, therefore, celestial interference refers to the interference of their electromagnetic waves on the radar level gauge. We are very unfamiliar with Tiandian. The so-called Tiandian is usually understood as the interference of the signal of the magnetrol radar level gauge caused by the ionization of the atmosphere, lightning, or the electromagnetic waves generated by natural phenomena such as volcanoes and earthquakes.

Power supply and output signal, the power supply has 220 V A C, 24 VDC, and the two-wire or four-wire system can be selected according to the needs. Output signal 4 ~ 20 mA DC or digital signal, select the appropriate model according to the needs. The above are all factors that need to be considered when selecting a radar level transmitter. The essence of the details is a serious attitude and a scientific spirit. I hope that every user can choose a suitable radar level meter.

In addition, some silos in cement plants are very high, such as homogenizing silos of 50cm. It takes time and energy to board high silos to debug radar, so it is recommended to choose HART handheld operators that can be debugged remotely in the central control room. In the central control room, the range and other basic parameters can be set, and the radar echo waveform can be observed, and the waveform can be used for remote diagnosis and debugging, greatly reducing the on-site work intensity of the staff, to avoid the risk of climbing operation. The smart radar level gauge commonly used at present also has a function similar to “driving recorder”, that is, when the material surface mutation occurs on the scene, it can capture the radar echo waveform at that time, which is very useful for debugging the silo under complex conditions.

Under many operating conditions, ultrasonic level meter and radar level meter are commonly used. Some users are very entangled in the choice of these two level meter and do not know how to choose. Today, let’s talk about the principles and selection principles of these two types of level meter . Principle and selection principle of ultrasonic level meter. Working principle: The ultrasonic pulse probe emits a beam of ultrasonic pulses to the measured medium, and the sound wave is reflected by the liquid surface. The distance between the liquid levels is measured by measuring the time difference between the emission and reflection of the sound waves. Since the ultrasonic level gauge is not a liquid, it can be used to measure corrosive, non-volatile and non-foaming places.

There is AC interference and the voltage is high. For example, for the radar level meter used in the production line, the power supply requirement is 24VDC (typical value), but in the on-site measurement, it is found that the power supply is displayed as 27.2V, which is significantly higher than 24VDC, resulting in a large measurement result and even a radar level meter. crash phenomenon. The installation position of the radar level meter is incorrect, which leads to deviations in the measurement. For example, the accumulation of aggregates in the transfer bin is a “mountain”-shaped cone, but only one radar level meter is installed near the discharge port of the return belt. , the installation position is too close to the discharge opening of the return belt, and at the same time, it is too far from the discharge opening of the feeding belt on both sides. Just below the radar level meter is the drop point of the return belt. If the distance is too close, the aggregate in the falling process will interfere with the radar level meter and form false reflections.